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What influences the heating behavior of people?

2

Emma 
Peter

Health Psychologists
What do people eat?

Impact of surrounding?

Motives for particular dish?



Background and Dataset
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99 participants 2,571 meals motives + surroundings manual extraction of
nutrition + ingredients
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https://datavizproject.com/data-type/parallel-coordinates/

https://plotlyblog.tumblr.com/post/174657459542/what-is-a-splom-chart-making-scatterplot-matrices

https://en.wikipedia.org/wiki/Principal_component_analysis

Jäckle et al. Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces (VAST 2017)

Scatter Plot (Matrix) Projection Subspace Analysis

categorical numerical binary

Parallel Coordinates
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https://datavizproject.com/data-type/parallel-coordinates/

https://plotlyblog.tumblr.com/post/174657459542/what-is-a-splom-chart-making-scatterplot-matrices

https://en.wikipedia.org/wiki/Principal_component_analysis

Jäckle et al. Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces (VAST 2017)

Scatter Plot (Matrix) Projection Subspace AnalysisParallel Coordinates

check findings
statistic validationchange mental model



7Keim, Daniel, et al. "Visual analytics: Definition, process, and challenges." Information visualization. Springer, Berlin, Heidelberg, 2008. 154-175.

Automatic handling and aggregation of mixed data types

Simplification of complex data transformations

Automatic pattern identification and highlighting

Automated reliability analysis (of visual patterns)
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Subspace A Subspace B Subspace C
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Subspace A Subspace B Subspace C

G2

G1

G3



10

Subspace A Subspace B Subspace C

G2

G1

G3

SMARTable



Comparison of different meal types

• Records are grouped by meal type

• Semantic grouping of dimensions
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Comparison of different meal types

• Records are grouped by meal type

• Semantic grouping of dimensions

• Automatic sorting of dimensions by visual similarity or avg. descriptor
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mean



Subspace with mixed data types
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numerical + binary dimension
- value = | meangroup – meandimension |

categorical dimension
- value = Eucl. distance between frequency histograms

high-value
- highest deviation from dimension taste
- but no information about the actual value



Subspace with mixed data types
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numerical + binary dimension
- value = | meangroup – meandimension |

categorical dimension
- value = Eucl. distance between frequency histograms



Interaction within the SMARTable
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Normalizing Strategies
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Normalize per dimension -- Useful for dimension with different scale

Normalize per subspace -- Useful for dimension with same scale

Is there a difference
between male and female?



Drill-down: Stacked SMARTable
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Is there a difference
between male and female?



Drill-down: Stacked SMARTable
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Drill-down: Stacked SMARTable
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Similarity Search

24



Similarity Search
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Reliability of visual patterns
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Can we trust the patterns which we perceive?
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Visible patterns

- (linear) correlation between kcal and all nutrition

- meals with low calories are related to the motive health and weight control
and the ingredient is mainly fruits



Statistical significance of a dimension
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Are all these descriptors 
significantly different from each other?

Typical example: ANOVA



Statistical significance of a descriptor
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Is this descriptor significantly different
from the entire dimension?

Typical example: t-test



Statistical significance of descriptors and dimensions
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Assumption-based (automatic) selection of statistical test
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• Appropriate test is automatically selected by data/distribution properties 

• Based on the rules by Andy Field [1]

• Similar rules for categorical and binary dimensions

[1] A. Field. Discovering statistics using IBM SPSS statistics. sage, 2013



Future Work based on expert user feedback

• Support hypothesis generation
by including automatic algorithms e.g., subspace clustering

• More data types
e.g., time series, etc.

• Layout flexibility
change back and forth between classical approaches and the SMARTable

• Data analytical provenance
add explicit gallery view
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https://smartexplore.dbvis.de

@mi_blumenschein


